0741:摘樱桃(★★)
目录
题目
给你一个 n x n
的网格 grid
,代表一块樱桃地,每个格子由以下三种数字的一种来表示:
0
表示这个格子是空的,所以你可以穿过它。1
表示这个格子里装着一个樱桃,你可以摘到樱桃然后穿过它。-1
表示这个格子里有荆棘,挡着你的路。
请你统计并返回:在遵守下列规则的情况下,能摘到的最多樱桃数:
- 从位置
(0, 0)
出发,最后到达(n - 1, n - 1)
,只能向下或向右走,并且只能穿越有效的格子(即只可以穿过值为0
或者1
的格子); - 当到达
(n - 1, n - 1)
后,你要继续走,直到返回到(0, 0)
,只能向上或向左走,并且只能穿越有效的格子; - 当你经过一个格子且这个格子包含一个樱桃时,你将摘到樱桃并且这个格子会变成空的(值变为
0
); - 如果在
(0, 0)
和(n - 1, n - 1)
之间不存在一条可经过的路径,则无法摘到任何一个樱桃。
示例 1:
输入:grid = [[0,1,-1],[1,0,-1],[1,1,1]] 输出:5 解释:玩家从 (0, 0) 出发:向下、向下、向右、向右移动至 (2, 2) 。 在这一次行程中捡到 4 个樱桃,矩阵变成 [[0,1,-1],[0,0,-1],[0,0,0]] 。 然后,玩家向左、向上、向上、向左返回起点,再捡到 1 个樱桃。 总共捡到 5 个樱桃,这是最大可能值。
示例 2:
输入:grid = [[1,1,-1],[1,-1,1],[-1,1,1]] 输出:0
提示:
n == grid.length
n == grid[i].length
1 <= n <= 50
grid[i][j]
为-1
、0
或1
grid[0][0] != -1
grid[n - 1][n - 1] != -1
相似问题:
分析
单程是个很显然的 dp 问题,双程则会互相影响,不能分开求。
那么考虑一起递推,到 (i,j) 位置的双程的最大值,依赖于上一步两条线路的结尾。
为了递推,令 dfs(i1,j1,i2,j2) 代表两条线路分别到 (i1,j1)、(i2,j2) 位置时的最大值,即可递推。
注意到递推过程中 i1+j1==i2+j2,因此可以简化为 dfs(k, i1, i2) 代表第 k 步 两条线路分别到 (i1,k-i1)、(i2,k-i2) 位置时的最大值。
解答
|
|
1040 ms