目录

2532:过桥的时间(2588 分)

力扣第 327 场周赛第 4 题

题目

共有 k 位工人计划将 n 个箱子从旧仓库移动到新仓库。给你两个整数 nk,以及一个二维整数数组 time ,数组的大小为 k x 4 ,其中 time[i] = [leftToRighti, pickOldi, rightToLefti, putNewi]

一条河将两座仓库分隔,只能通过一座桥通行。旧仓库位于河的右岸,新仓库在河的左岸。开始时,所有 k 位工人都在桥的左侧等待。为了移动这些箱子,第 i 位工人(下标从 0 开始)可以:

  • 从左岸(新仓库)跨过桥到右岸(旧仓库),用时 leftToRighti 分钟。
  • 从旧仓库选择一个箱子,并返回到桥边,用时 pickOldi 分钟。不同工人可以同时搬起所选的箱子。
  • 从右岸(旧仓库)跨过桥到左岸(新仓库),用时 rightToLefti 分钟。
  • 将箱子放入新仓库,并返回到桥边,用时 putNewi 分钟。不同工人可以同时放下所选的箱子。

如果满足下面任一条件,则认为工人 i效率低于 工人 j

  • leftToRighti + rightToLefti > leftToRightj + rightToLeftj
  • leftToRighti + rightToLefti == leftToRightj + rightToLeftji > j

工人通过桥时需要遵循以下规则:

  • 如果工人 x 到达桥边时,工人 y 正在过桥,那么工人 x 需要在桥边等待。
  • 如果没有正在过桥的工人,那么在桥右边等待的工人可以先过桥。如果同时有多个工人在右边等待,那么 效率最低 的工人会先过桥。
  • 如果没有正在过桥的工人,且桥右边也没有在等待的工人,同时旧仓库还剩下至少一个箱子需要搬运,此时在桥左边的工人可以过桥。如果同时有多个工人在左边等待,那么 效率最低 的工人会先过桥。

所有 n 个盒子都需要放入新仓库,请你返回最后一个搬运箱子的工人 到达河左岸 的时间。

示例 1:

输入:n = 1, k = 3, time = [[1,1,2,1],[1,1,3,1],[1,1,4,1]]
输出:6
解释:
从 0 到 1 :工人 2 从左岸过桥到达右岸。
从 1 到 2 :工人 2 从旧仓库搬起一个箱子。
从 2 到 6 :工人 2 从右岸过桥到达左岸。
从 6 到 7 :工人 2 将箱子放入新仓库。
整个过程在 7 分钟后结束。因为问题关注的是最后一个工人到达左岸的时间,所以返回 6 。

示例 2:

输入:n = 3, k = 2, time = [[1,9,1,8],[10,10,10,10]]
输出:50
解释:
从 0 到 10 :工人 1 从左岸过桥到达右岸。
从 10 到 20 :工人 1 从旧仓库搬起一个箱子。
从 10 到 11 :工人 0 从左岸过桥到达右岸。
从 11 到 20 :工人 0 从旧仓库搬起一个箱子。
从 20 到 30 :工人 1 从右岸过桥到达左岸。
从 30 到 40 :工人 1 将箱子放入新仓库。
从 30 到 31 :工人 0 从右岸过桥到达左岸。
从 31 到 39 :工人 0 将箱子放入新仓库。
从 39 到 40 :工人 0 从左岸过桥到达右岸。
从 40 到 49 :工人 0 从旧仓库搬起一个箱子。
从 49 到 50 :工人 0 从右岸过桥到达左岸。
从 50 到 58 :工人 0 将箱子放入新仓库。
整个过程在 58 分钟后结束。因为问题关注的是最后一个工人到达左岸的时间,所以返回 50 。

提示:

  • 1 <= n, k <= 104
  • time.length == k
  • time[i].length == 4
  • 1 <= leftToRighti, pickOldi, rightToLefti, putNewi <= 1000

相似问题:

分析

  • 注意过桥时其它都得等着,所以只考虑上下桥的时间点,并维护所有工人的状态
  • lb、lf、rb、rf 分别维护左忙、左闲、右忙、右闲的工人
  • 当右边没工人且没箱子时,即是所求时间

解答

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution:
    def findCrossingTime(self, n: int, k: int, time: List[List[int]]) -> int:
        A = sorted(time,key=lambda p:p[0]+p[2])[::-1]
        lb,lf,rb,rf = [],list(range(k)),[],[]
        t = 0
        while True:
            if not rb and not rf and n==0:
                return t
            while rb and rb[0][0]<=t:
                heappush(rf,heappop(rb)[1])
            while lb and lb[0][0]<=t:
                heappush(lf,heappop(lb)[1])
            if rf:
                i = heappop(rf)
                heappush(lb,(t+A[i][2]+A[i][3],i))
                t += A[i][2]
            elif lf and n:
                i = heappop(lf)
                heappush(rb,(t+A[i][0]+A[i][1],i))
                n -= 1
                t += A[i][0]
            else:
                t1 = lb[0][0] if lb else inf
                t2 = rb[0][0] if rb else inf
                t = min(t1,t2)

228 ms