1473:粉刷房子 III(2056 分)
目录
题目
在一个小城市里,有 m 个房子排成一排,你需要给每个房子涂上 n 种颜色之一(颜色编号为 1 到 n )。有的房子去年夏天已经涂过颜色了,所以这些房子不可以被重新涂色。
我们将连续相同颜色尽可能多的房子称为一个街区。(比方说 houses = [1,2,2,3,3,2,1,1] ,它包含 5 个街区 [{1}, {2,2}, {3,3}, {2}, {1,1}] 。)
给你一个数组 houses ,一个 m * n 的矩阵 cost 和一个整数 target ,其中:
houses[i]:是第i个房子的颜色,0 表示这个房子还没有被涂色。cost[i][j]:是将第i个房子涂成颜色j+1的花费。
请你返回房子涂色方案的最小总花费,使得每个房子都被涂色后,恰好组成 target 个街区。如果没有可用的涂色方案,请返回 -1 。
示例 1:
输入:houses = [0,0,0,0,0], cost = [[1,10],[10,1],[10,1],[1,10],[5,1]], m = 5, n = 2, target = 3
输出:9
解释:房子涂色方案为 [1,2,2,1,1]
此方案包含 target = 3 个街区,分别是 [{1}, {2,2}, {1,1}]。
涂色的总花费为 (1 + 1 + 1 + 1 + 5) = 9。
示例 2:
输入:houses = [0,2,1,2,0], cost = [[1,10],[10,1],[10,1],[1,10],[5,1]], m = 5, n = 2, target = 3
输出:11
解释:有的房子已经被涂色了,在此基础上涂色方案为 [2,2,1,2,2]
此方案包含 target = 3 个街区,分别是 [{2,2}, {1}, {2,2}]。
给第一个和最后一个房子涂色的花费为 (10 + 1) = 11。
示例 3:
输入:houses = [0,0,0,0,0], cost = [[1,10],[10,1],[1,10],[10,1],[1,10]], m = 5, n = 2, target = 5 输出:5
示例 4:
输入:houses = [3,1,2,3], cost = [[1,1,1],[1,1,1],[1,1,1],[1,1,1]], m = 4, n = 3, target = 3
输出:-1
解释:房子已经被涂色并组成了 4 个街区,分别是 [{3},{1},{2},{3}] ,无法形成 target = 3 个街区。
提示:
m == houses.length == cost.lengthn == cost[i].length1 <= m <= 1001 <= n <= 201 <= target <= m0 <= houses[i] <= n1 <= cost[i][j] <= 10^4
相似问题:
分析
- 令 f(i,j,k) 代表 house[:j+1] 涂色且以颜色 k 结尾,刚好 i 个街区的最小花费
- 要么 j 单独一个社区,转为 f(i-1,j-1,非k的颜色)
- 要么 j 和前面的颜色相同,转为 f(i,j-1,k)
- 注意若 house[j]>0,k!=house[j] 是不合法的
- 若 house[j]=0,需要加上 cost[j][k-1]
#1
|
|
1007 ms
#2
- 求 min(f[j-1][a]),a!=k 可以预处理 f[j-1] 的最小值和次小值,即可快速得到
解答
|
|
159 ms