目录

1467:两个盒子中球的颜色数相同的概率(2356 分)

力扣第 191 场周赛第 4 题

题目

桌面上有 2n 个颜色不完全相同的球,球上的颜色共有 k 种。给你一个大小为 k 的整数数组 balls ,其中 balls[i] 是颜色为 i 的球的数量。

所有的球都已经 随机打乱顺序 ,前 n 个球放入第一个盒子,后 n 个球放入另一个盒子(请认真阅读示例 2 的解释部分)。

注意:这两个盒子是不同的。例如,两个球颜色分别为 ab,盒子分别为 [](),那么 [a] (b)[b] (a) 这两种分配方式是不同的(请认真阅读示例的解释部分)。

请返回「两个盒子中球的颜色数相同」的情况的概率。答案与真实值误差在 10^-5 以内,则被视为正确答案

示例 1:

输入:balls = [1,1]
输出:1.00000
解释:球平均分配的方式只有两种:
- 颜色为 1 的球放入第一个盒子,颜色为 2 的球放入第二个盒子
- 颜色为 2 的球放入第一个盒子,颜色为 1 的球放入第二个盒子
这两种分配,两个盒子中球的颜色数都相同。所以概率为 2/2 = 1 。

示例 2:

输入:balls = [2,1,1]
输出:0.66667
解释:球的列表为 [1, 1, 2, 3]
随机打乱,得到 12 种等概率的不同打乱方案,每种方案概率为 1/12 :
[1,1 / 2,3], [1,1 / 3,2], [1,2 / 1,3], [1,2 / 3,1], [1,3 / 1,2], [1,3 / 2,1], [2,1 / 1,3], [2,1 / 3,1], [2,3 / 1,1], [3,1 / 1,2], [3,1 / 2,1], [3,2 / 1,1]
然后,我们将前两个球放入第一个盒子,后两个球放入第二个盒子。
这 12 种可能的随机打乱方式中的 8 种满足「两个盒子中球的颜色数相同」。
概率 = 8/12 = 0.66667

示例 3:

输入:balls = [1,2,1,2]
输出:0.60000
解释:球的列表为 [1, 2, 2, 3, 4, 4]。要想显示所有 180 种随机打乱方案是很难的,但只检查「两个盒子中球的颜色数相同」的 108 种情况是比较容易的。
概率 = 108 / 180 = 0.6 。

提示:

  • 1 <= balls.length <= 8
  • 1 <= balls[i] <= 6
  • sum(balls) 是偶数

分析

  • 令 f(a,b) 代表两个盒子球数之差为 a,颜色数之差为 b 的方案数
  • 按第一种颜色分多少个给第一个盒子,递推即可

解答

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Solution:
    def getProbability(self, balls: List[int]) -> float:
        f = {(0,0):1}
        for c in balls:
            g = defaultdict(int)
            for x in range(c+1):
                y,mul = c-x,comb(c,x)
                for (a,b),w in f.items():
                    g[(a+x-y,b+(x>0)-(y>0))] += w*mul
            f = g
        return f[(0,0)]/sum(f[p] for p in f if p[0]==0)

3 ms