力扣第 509 题
题目
斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n ,请计算 F(n) 。
示例 1:
输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:
输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3
提示:
相似问题:
分析
#1
递推即可
1
2
3
4
5
6
|
class Solution:
def fib(self, n: int) -> int:
a,b = 0,1
for _ in range(n):
a,b = b,a+b
return a
|
0 ms
#2
可以用矩阵快速幂的通用模板
解答
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
# 矩阵快速幂
mod = 10**31
class MatPow:
def __init__(self,A): # k 阶递推式需要给定前 k*2 项
k = len(A)//2
self.f = A[:k]
self.A = A
self.g = self.gen(A)[::-1]
def gen(self,A): # Berlekamp-Massey 算法,给定前 k*2 项 A,返回符合的最短系数组 g
pre_c = []
pre_i, pre_d = -1, 0
g = []
for i,a in enumerate(A):
d = (a-sum(x*A[i-1-j] for j,x in enumerate(g)))%mod
if d == 0:
continue
if pre_i<0: # 首次算错,初始化 g 为 i+1 个 0
g = [0]*(i+1)
pre_i,pre_d = i,d
continue
bias = i-pre_i
old_len = len(g)
new_len = bias + len(pre_c)
if new_len>old_len: # 递推式变长了
tmp = g[:]
g += [0]*(new_len-old_len)
delta = d*pow(pre_d,-1,mod)%mod
g[bias-1] = (g[bias-1]+delta)%mod
for j,c in enumerate(pre_c):
g[bias+j] = (g[bias+j]-delta*c)%mod
if new_len>old_len:
pre_c = tmp
pre_i,pre_d = i,d
return g
def get(self,n): # Kitamasa 算法,给定前 k 项 f 和系数组 g,求第 n 项
def compose(A,B): # 根据 g(n) 的系数组 A 和 g(m) 的系数组 B 计算 g(n+m) 的系数组
C = [0]*k
for a in A:
for j,b in enumerate(B):
C[j] = (C[j]+a*b)%mod
B = [((B[i-1] if i else 0)+B[-1]*g[i])%mod for i in range(k)]
return C
f,g = self.f,self.g
if n<len(f):
return f[n]%mod
k = len(g)
if k == 0:
return 0
if k == 1:
return f[0]*pow(g[0],n,mod)%mod
res = [0]*k
C = [0]*k
res[0] = C[1] = 1
while n:
res = compose(C,res) if n&1 else res
C = compose(C,C)
n >>= 1
return sum(a*b for a,b in zip(res,f))%mod
class Solution:
def fib(self, n: int) -> int:
A = [0,1]
for _ in range(2):
A.append(A[-2]+A[-1])
MP = MatPow(A)
return MP.get(n)
|
0 ms