目录

0396:旋转函数(★)

力扣第 396 题

题目

给定一个长度为 n 的整数数组 nums

假设 arrk 是数组 nums 顺时针旋转 k 个位置后的数组,我们定义 nums旋转函数 F 为:

  • F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1]

返回 F(0), F(1), ..., F(n-1)中的最大值

生成的测试用例让答案符合 32 位 整数。

示例 1:

输入: nums = [4,3,2,6]
输出: 26
解释:
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
所以 F(0), F(1), F(2), F(3) 中的最大值是 F(3) = 26 。

示例 2:

输入: nums = [100]
输出: 0

提示:

  • n == nums.length
  • 1 <= n <= 105
  • -100 <= nums[i] <= 100

分析

观察发现 F(k) 可以递推:

$$F[k] = F[k-1]+sum(A)-len(A)*A[-k]$$

解答

1
2
3
4
5
6
7
8
9
class Solution:
    def maxRotateFunction(self, nums: List[int]) -> int:
        s,n = sum(nums),len(nums)
        f = sum(i*x for i,x in enumerate(nums))
        res = f
        for x in nums[::-1]:
            f = f+s-n*x
            res = max(res,f)
        return res

227 ms