0236:二叉树的最近公共祖先(★)
目录
题目
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
示例 1:
输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 输出:3 解释:节点5
和节点1
的最近公共祖先是节点3 。
示例 2:
输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 输出:5 解释:节点5
和节点4
的最近公共祖先是节点5 。
因为根据定义最近公共祖先节点可以为节点本身。
示例 3:
输入:root = [1,2], p = 1, q = 2 输出:1
提示:
- 树中节点数目在范围
[2, 105]
内。 -109 <= Node.val <= 109
- 所有
Node.val
互不相同
。 p != q
p
和q
均存在于给定的二叉树中。
相似问题:
- 0235:二叉搜索树的最近公共祖先
- 1257:最小公共区域(1654 分)
- 2225:找出输掉零场或一场比赛的玩家(1316 分)
- 1644:二叉树的最近公共祖先 II
- 1650:二叉树的最近公共祖先 III
- 1676:二叉树的最近公共祖先 IV
- 2096:从二叉树一个节点到另一个节点每一步的方向(1804 分)
- 2509:查询树中环的长度(1948 分)
分析
- 与 0235 不同,不再有序了,考虑换一种递归方式
- 假如 p、q 分别在 root 的左右子树,结果就是 root
- 否则应该递归一边
- 为了递归,dfs(u) 应返回 u 包含 p、q 的状态:
- 若 u 同时有 p、q,返回 p、q 的最近公共祖先
- 若 u 中有 p 或 q,返回 p 或 q 节点
- 若 u 中都没有,返回 None
解答
|
|
46 ms