cf2001d: Longest Max Min Subsequence
组合计数
- 保底有 1,先都去掉 1,m-=1
- 假如 m=1,可以用状压 dp 递推出每种石堆状态能否取到 1
- 假如 m>1,将生成的石堆中>=m的看作 1,<m 的看作 0,利用状压 dp 的结果即可判断最终取到 >=m 的石堆状态有多少个
- 那么遍历 i 从 1 到 m,统计 >=i 的石堆状态个数,累加即可
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
import sys
input = lambda: sys.stdin.readline().rstrip()
def II(base=10):
return int(input(),base)
def LI():
return list(map(int,input()))
def LII():
return list(map(int,input().split()))
mod = 10**9+7
M = 10**6+1
P = [[1]*M for _ in range(21)]
for j in range(2,M):
for i in range(1,21):
P[i][j] = P[i-1][j]*j%mod
def main():
n,m = LII()
k = II()
A = LII()
if m==1:
print(1)
return
f = [[0]*(1<<i) for i in range(n+1)]
g = [[1]*(1<<i) for i in range(n+1)]
f[1][1] = 1
g[1][0] = 0
for i in range(2,n+1):
for j in range(1<<i):
for a in A:
if a>i:
break
x = j>>a<<(a-1)
y = j&((1<<(a-1))-1)
j2 = x|y
f[i][j] |= g[i-1][j2]
g[i][j] &= f[i-1][j2]
ct = [0]*(n+1)
for j in range(1<<n):
if f[-1][j]:
ct[j.bit_count()] += 1
s = P[n][m]
for j in range(n+1):
for i in range(2,m+1):
s += ct[j]*P[n-j][i-1]%mod*P[j][m-i+1]%mod
s %= mod
print(s)
for _ in range(II()):
main()
|
1202 ms