目录

cf2140e2: Prime Gaming (Hard Version)

目录

cf2001d: Longest Max Min Subsequence

组合计数

  • 保底有 1,先都去掉 1,m-=1
  • 假如 m=1,可以用状压 dp 递推出每种石堆状态能否取到 1
  • 假如 m>1,将生成的石堆中>=m的看作 1,<m 的看作 0,利用状压 dp 的结果即可判断最终取到 >=m 的石堆状态有多少个
  • 那么遍历 i 从 1 到 m,统计 >=i 的石堆状态个数,累加即可
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import sys
input = lambda: sys.stdin.readline().rstrip()

def II(base=10):
    return int(input(),base)

def LI():
    return list(map(int,input()))

def LII():
    return list(map(int,input().split()))

mod = 10**9+7
M = 10**6+1 
P = [[1]*M for _ in range(21)]
for j in range(2,M):
    for i in range(1,21):
        P[i][j] = P[i-1][j]*j%mod

def main():
    n,m = LII()
    k = II()
    A = LII()
    if m==1:
        print(1)
        return
    f = [[0]*(1<<i) for i in range(n+1)]
    g = [[1]*(1<<i) for i in range(n+1)]
    f[1][1] = 1
    g[1][0] = 0
    for i in range(2,n+1):
        for j in range(1<<i):
            for a in A:
                if a>i:
                    break
                x = j>>a<<(a-1)
                y = j&((1<<(a-1))-1)
                j2 = x|y
                f[i][j] |= g[i-1][j2]
                g[i][j] &= f[i-1][j2]
    ct = [0]*(n+1)
    for j in range(1<<n):
        if f[-1][j]:
            ct[j.bit_count()] += 1
    s = P[n][m]
    for j in range(n+1):
        for i in range(2,m+1):
            s += ct[j]*P[n-j][i-1]%mod*P[j][m-i+1]%mod
            s %= mod
    print(s)

for _ in range(II()):
    main()

1202 ms